STABILITY OF CLOSED SETS IN FLOWS ON TVS-CONE METRIC SPACES

KYUNG BOK LEE*

ABSTRACT. The concept of the stability is very important in dynamical systems. This paper is devoted to the study some properties of stability on a TVS-cone metric space.

1. Introduction and Preliminaries

Stability has been studied in the continuous flow (X, f) on an arbitrary metric space X by N.P. Bhatia and G.P. Szego [2], and in the compact closed relation dynamical systems by G.S. Kim and K.B. Lee [5]. Recently Long-Guang and Xian [1] generalized the notion of metric space by replacing the set of real numbers by an ordered Banach space, defined a cone metric space. I. Beg, A. Abbas, and M. Arshad [3] introuduced a topological vector space valued cone metric space(or shortly TVS-cone metric space). The purpose of this paper is to study some properties of stability in TVS-cone metric space.

We first mention some definitions and theorems.

DEFINITION 1.1. [1] Let E be a real Banach space. A nonempty convex closed subset $P \subset E$ is called a cone in E if

- 1) P is closed, nonempty, and $P \neq \{0_E\}$ where 0_E is the zero vector in E,
 - 2) if $x, y \in P$, then $ax + by \in P$ for $a, b \ge 0$ $a, b \in \mathbb{R}$,
 - 3) If $x \in P$ and $-x \in P$, then $x = 0_E$.

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. We shall write $x \prec y$ to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in \text{Int}P$, IntP dentoes the interior of P.

Received Mar 14, 2019; Accepted Jul 21, 2019.

²⁰¹⁰ Mathematics Subject Classification: Primary 12A34, 56B34; Secondary 78C34.

Key words and phrases: TVS-cone metric space, flow, stability.

DEFINITION 1.2. [1] Let X be a nonempty set and let E be a Banach space with a cone P. We say (X,d) is a cone metric space if the mapping $d: X \times X \to E$ satisfies

- (1) $0_E \leq d(x, y)$ for all $x, y \in X$ and $d(x, y) = 0_E$ if and only if x = y,
- (2) d(x,y) = d(y,x) for all $x, y \in X$,
- (3) $d(x,y) \leq d(x,z) + d(z,y)$ for all $x, y, z \in X$.

In the case of general metric spaces, the negation of $d(a,b) \geq c$ is d(a,b) < c, but it does not hold in the cone metric space, which is shown in the following example.

EXAMPLE 1.3. Let $E = \mathbb{R}^2$ and $P = \{(x,y) : x \geq 0, y \geq 0\}$. Then P is the cone of \mathbb{R}^2 under the partial ordering: $(x_1,y_1) \leq (x_2,y_2)$ iff $x_1 \leq x_2$ and $y_1 \leq y_2$. Also it is clear that $\operatorname{Int}(P) = \{(x,y) : x > 0, y > 0\} \neq \emptyset$. Let $X = \mathbb{R}^2$ and define $d : X \times X \to E$ by $d((x_1,y_1),(x_2,y_2)) = (|x_1 - x_2|, |y_1 - y_2|)$. Then d is a cone metric on X. Let a = (0,2), b = (1,0) and c = (2,1). Then $d(a,b) = (1,2) \in \operatorname{Int} P$ and $c \in \operatorname{Int} P$ but $d(a,b) \not \leq c$ and $c \not \prec d(a,b)$.

DEFINITION 1.4. [1] Let (X,d) be a cone metric space. Let $\{x_n\}$ be a sequence in X and $x \in X$. $\{x_n\}$ is said to be *convergent* and $\{x_n\}$ converges to x if for every $c \in E$ with $0_E \ll c$ there is an $N \in \mathbb{N}$ such that for all n > N, $d(x_n, x) \ll c$. We denote this by $x_n \xrightarrow{X} x$.

LEMMA 1.5. [4] Let P be a TVS-cone of a topological vector space E and $x, y \in E$. Then the following statements hold:

- 1) If $0_E \ll x$, then $0_E \ll ax$ for each $a \in \mathbb{R}^+$.
- 2) If $x \ll y$ and $p \leq q$, then $x + p \ll y + q$.
- 3) If $0_E \ll x$ and $0_E \ll y$, then there is $z \in E$ such that $0_E \ll z$, $z \ll x$ and $z \ll y$.

THEOREM 1.6. [4] Let (X, d) be a TVS-cone metric space. Put $\mathfrak{B} = \{B(x, \epsilon) : x \in X \text{ and } 0_E \ll \epsilon\}$, where $B(x, \epsilon) = \{y \in X : d(x, y) \ll \epsilon\}$. Then \mathfrak{B} is a base for some topology on X.

In this paper, we always suppose that a cone P is a TVS-cone of a topological vector space E and a TVS-cone metric space (X, d) is a topological space with the topology \Im , which is generated by \mathfrak{B} .

Theorem 1.7. A TVS-cone metric space X is first countable.

Proof. Let $0_E \ll \epsilon$ be given. We show that $\{B(x, \frac{1}{n}\epsilon) : n = 1, 2, 3, \cdots\}$ is a conuntable basis at x for any $x \in X$. For any $\delta \gg 0_E$ define a map $\theta : E \to E$ by $\theta(v) = v + \delta$. Since $\theta(0_E) = \delta \in \text{Int}P$ and θ is continuous,

there exists a symmetric neighborhood U of 0_E such that $\theta(U) \subset \text{Int} P$. Since $\frac{1}{n}\epsilon \xrightarrow{X} 0_E$, there is a natural number m such that $\frac{1}{m}\epsilon \in U$. Since $-\frac{1}{m}\epsilon \in -U = U$, $\delta - \frac{1}{m}\epsilon = \theta(-\frac{1}{m}\epsilon) \in \theta(U) \subset \text{Int} P$. Therefore $\frac{1}{m}\epsilon \ll \delta$. Hence $B(x, \frac{1}{m}\epsilon) \subset B(x, \delta)$.

Now we define a flow and also define the positive semi-trajectory, positive limit set, and positive prolongational limit set and study some properties of them on a TVS-cone metric space.

DEFINITION 1.8. Let (X, d) be a TVS-cone metric space. A flow on X is the triplet (X, \mathbb{R}, f) , where f is a map from the product space $X \times \mathbb{R}$ into the space X satisfying the following axioms;

- (1) (Identity axiom) f(x,0) = x for every $x \in X$;
- (2) (Group axiom) $f(f(x,t_1),t_2) = f(x,t_1+t_2)$ for every $x \in X$ and $t_1,t_2 \in \mathbb{R}$;
 - (3) (Continuous axiom) f is continuous:

In the sequel we shall generally delete the symbol f. Thus the image f(x,t) will be written simply as xt.

DEFINITION 1.9. [2] Define maps γ^+ , Λ^+ , and J^+ from X into 2^X by defining for any $x \in X$,

 $\gamma^+(x) = \{xt : t \in \mathbb{R}\}, \ \Lambda^+(x) = \{y \in X : \text{there is a sequence } \{t_n\} \text{ in } \mathbb{R}^+ \text{ with } t_n \to +\infty \text{ and } xt_n \xrightarrow{X} y\}, \ J^+(x) = \{y \in X : \text{there is a sequence} \{x_n\} \text{ in } X \text{ and a sequence } \{t_n\} \text{ in } \mathbb{R}^+ \text{ such that } x_n \xrightarrow{X} x, t_n \to +\infty, \text{ and } x_n t_n \xrightarrow{X} y\}.$

For any $x \in X$, the sets $\gamma^+(x)$, $\Lambda^+(x)$ and $J^+(x)$ are called the positive semi-trajectory, positive (or omega) limit set, and positive prolongational limit set of x, respectively.

Theorem 1.10. Let $x \in X$.

- (1) $\Lambda^+(x)$, $J^+(x)$ are closed invariant sets.
- $(2) \overline{\gamma^+(x)} = \gamma^+(x) \cup \Lambda^+(x).$
- (3) If $\overline{\gamma^+(x)}$ is compact, then $\Lambda^+(x) \neq \emptyset$.

Proof. (1) Let $\{y_n\}$ be a sequence in $\Lambda^+(x)$ with $y_n \xrightarrow{X} y$. For each k since $y_k \in \Lambda^+(x)$, there is a sequence $\{t_n^k\}$ in \mathbb{R}^+ with $t_n^k \to +\infty$ and $xt_n^k \xrightarrow{X} y_k$. For any $\epsilon \gg 0_E$ we may assume without loss of generality that $d(y_k, xt_n^k) \ll \frac{1}{k}\epsilon$ and $t_n^k \geq k$ for $n \geq k$. Consider now the sequence $\{t_n\}$ in \mathbb{R}^+ with $t_n = t_n^n$. Then $t_n \to +\infty$ and we claim that $xt_n \xrightarrow{X} y$. To see that, observe that

 $d(y, xt_n) \leq d(y, y_n) + d(y_n, xt_n) \ll d(y, y_n) + \frac{1}{n}\epsilon.$

Since $\frac{1}{n}\epsilon$ and $d(y, y_n)$ tend to the zero vector we conclude that $d(y, xt_n)$ is converges to 0_E . Consequently, $xt_n \xrightarrow{Y} y$ and $y \in \Lambda^+(x)$. Therefore $\Lambda^+(x)$ is closed.

Let $y \in \Lambda^+(x)$ and $t \in \mathbb{R}$. Then there is a sequence $\{t_n\}$ in \mathbb{R}^+ with $t_n \to +\infty$ and $xt_n \to y$. Then by the continuity axiom $(xt_n)t \to yt$. Since $(xt_n)t = x(t_n + t)$ and $t_n + t \to +\infty$ we have $yt \in \Lambda^+(x)$ and $\Lambda^+(x)$ is invariant.

Let $\{y_n\}$ be a sequence in $J^+(x)$ with $y_n \xrightarrow{Y} y \in X$. For each k since $y_k \in J^+(x)$, there are sequences $\{x_n^k\}$ in X and $\{t_n^k\}$ in \mathbb{R}^+ such that $x_n^k \xrightarrow{X} x \in X$, $t_n^k \to +\infty$ and $x_n^k t_n^k \xrightarrow{X} y_k$. For any $\epsilon \gg 0_E$ we may assume without loss of generality that $d(x, x_n^k) \ll \frac{1}{k}\epsilon, t_n^k \geq k$ and $d(y_k, x_n^k t_n^k) \ll \frac{1}{k} \epsilon$ for all $n \geq k$. Consider now the sequences $\{x_n\}$ in X and $\{t_n\}$ in \mathbb{R}^+ with $x_n = x_n^n$ and $t_n = t_n^n$. Then $t_n \to +\infty$, $x_n \to x_n$ and we claim that $x_n t_n \xrightarrow{V} y$.

To see that, observe that

 $d(y, x_n t_n) \leq d(y, y_n) + d(y_n, x_n t_n) \ll d(y, y_n) + \frac{1}{n} \epsilon$. Since $d(y, y_n)$ and $\frac{1}{n} \epsilon$ tend to 0_E we conclude that $d(y, x_n t_n) \xrightarrow{X} 0_E$. Consequently, $x_n t_n \xrightarrow{X} y$ and $y \in J^+(x)$. Therefore $J^+(x)$ is closed.

Let $y \in J^+(x)$ and $t \in \mathbb{R}$. Then there are sequences $\{x_n\}$ in X and $\{t_n\}$ in \mathbb{R}^+ such that $x_n \xrightarrow{X} x \in X$, $t_n \to +\infty$ and $x_n t_n \xrightarrow{X} y$. Then by the continuity axiom $(x_nt_n)t \xrightarrow{Y} yt$. Since $(x_nt_n)t = x_n(t_n+t)$ and $t_n + t \to +\infty$ we have $yt \in J^+(x)$ and $J^+(x)$ is invariant.

- (2) For this recall that $\gamma^+(x) = x\mathbb{R}^+$. By the definition of $\Lambda^+(x)$ we have $\gamma^+(x) \cup \Lambda^+(x) \subset \gamma^+(x)$. To see that $\gamma^+(x) \subset \gamma^+(x) \cup \Lambda^+(x)$, let $y \in \overline{\gamma^+(x)}$. Then there is a sequence $\{y_n\}$ in $\gamma^+(x)$ such that $y_n \xrightarrow{X} y$. Now $y_n = xt_n$ for a $t_n \in \mathbb{R}^+$. Either the sequence $\{t_n\}$ has the property that $t_n \to +\infty$, in which case $y \in \Lambda^+(x)$, or there is a subsequence $t_{n_k} \to t \in \mathbb{R}^+$ (as \mathbb{R}^+ is closed). But $xt_{n_k} \xrightarrow{X} xt \in \gamma^+(x)$, and since $xt_{n_k} \xrightarrow{Y} y$ we have $y = xt \in \gamma^+(x)$. Thus $\overline{\gamma^+(x)} \subset \gamma^+(x) \cup \Lambda^+(x)$.
- (3) Let $x_n = xn$. Then $\{x_n\}$ is a sequence in $\gamma^+(x)$. Since $\gamma^+(x)$ is compact, $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$. Let $x_n \xrightarrow{V} y$. Then $y \in \Lambda^+(x) \neq \emptyset$.

Proposition 1.11. A TVS-cone metric space X is Hausdorff.

Proof. Let $x,y \in X$ with $x \neq y$ and let $\epsilon \gg 0_E$ be given. If $B(x,\frac{1}{n}\epsilon) \cap B(y,\frac{1}{n}\epsilon) \neq \emptyset$ for any natural number n, then we can choose $x_n \in B(x,\frac{1}{n}\epsilon) \cap B(y,\frac{1}{n}\epsilon)$. Since $0_E \leq d(x,y) \leq d(x,x_n) + d(x_n,y) \ll \frac{1}{n}\epsilon + \frac{1}{n}\epsilon = \frac{2}{n}\epsilon$ and $\frac{2}{n}\epsilon \xrightarrow{X} 0_E$, $d(x,y) = 0_E$. This is a contradiction. Thus there is a natrual number n such that $B(x,\frac{1}{n}\epsilon) \cap B(y,\frac{1}{n}\epsilon) = \emptyset$. Therefore X is Hausdorff.

Proposition 1.12. Let X be a locally compact TVS-cone metric space and \underline{M} be a compact subset of X. Then there exists an $\epsilon \gg 0_E$ such that $\overline{B(M,\epsilon)} \subset U$ for any neighborhood U of M and $\overline{B(M,\epsilon)}$ is compact.

Proof. Since X is Hausdorff locally compact, there exists a neighborhood V of M such that $\overline{V} \subset U$ and \overline{V} is compact. For every $x \in M$ we can find $\epsilon(x) \gg 0_E$ so that $B(x, \epsilon(x)) \subset V$. Since $\{B(x, \frac{1}{2}\epsilon(x)) : x \in M\}$ is an open cover of M and M is compact, we can find $x_1, x_2, \cdots, x_n \in M$ so that $M \subset \bigcup_{k=1}^n B(x_k, \frac{1}{2}\epsilon(x_k))$. By Lemma 1.5, there exists an $\epsilon \gg 0_E$ such that $\epsilon \ll \frac{1}{2}\epsilon(x_1), \cdots, \epsilon \ll \frac{1}{2}\epsilon(x_n)$. For any $y \in B(M, \epsilon)$ we can find $x \in M$ such that $d(x, y) \ll \epsilon$. Choose k with $d(x_k, x) \ll \frac{1}{2}\epsilon(x_k)$, and $d(x_k, y) \preceq d(x_k, x) + d(x, y) \ll \frac{1}{2}\epsilon(x_k) + \epsilon \ll \frac{1}{2}\epsilon(x_k) + \frac{1}{2}\epsilon(x_k) = \epsilon(x_k)$. It means that $y \in B(x_k, \epsilon(x_k))$. Therefore $B(M, \epsilon) \subset \bigcup_{k=1}^n B(x_k, \epsilon(x_k)) \subset V$. Hence $\overline{B(M, \epsilon)} \subset \overline{V} \subset U$ and $\overline{B(M, \epsilon)}$ is compact.

PROPOSITION 1.13. Let X be locally compact TVS-cone metric space. Then $\Lambda^+(x) \neq \emptyset$ whenever $J^+(x)$ is nonempty and compact.

Proof. Suppose that $\Lambda^+(x)=\emptyset$. Since $\overline{\gamma^+(x)}=\gamma^+(x)\cup\Lambda^+(x)=\gamma^+(x)$, $\gamma^+(x)$ is a closed set. If $\gamma^+(x)\cap J^+(x)\neq\emptyset$, then $\gamma^+(x)\subset J^+(x)$ because of $J^+(x)$ is invariant. Since $J^+(x)$ is compact, $\gamma^+(x)$ is also compact. By Theorem 1.10, $\Lambda^+(x)\neq\emptyset$. This is a contradiction. Therefore $\gamma^+(x)\cap J^+(x)=\emptyset$. By Proposition 1.11, there exists an $\epsilon\gg 0_E$ such that $\overline{B(J^+(x),\epsilon)}\cap\gamma^+(x)=\emptyset$ and $\overline{B(J^+(x),\epsilon)}$ is compact. If $y\in B(J^+(x),\frac12\epsilon)\cap B(x,\frac12\epsilon)$, then there exists $z\in J^+(x)$ such that $d(z,y)\ll\frac12\epsilon$ and $d(z,x)\preceq d(z,y)+d(y,x)\ll\frac12\epsilon+\frac12\epsilon=\epsilon$. It means that $x\in B(J^+(x),\epsilon)\cap\gamma^+(x)$. This is a contradiction. Hence $B(J^+(x),\frac12\epsilon)\cap B(x,\frac12\epsilon)=\emptyset$.

Let $y \in J^+(x)$. There exist sequence $\{x_n\}$ in X and $\{t_n\}$ in \mathbb{R}^+ such that $x_n \xrightarrow{X} x$, $t_n \to +\infty$ and $x_n t_n \xrightarrow{X} y$. We can suppose that $x_n \in B(x, \frac{1}{2}\epsilon)$ and $x_n t_n \in B(J^+(x), \frac{1}{2}\epsilon)$ for all n. Since $x_n[0, t_n]$ is connected, there is a $0 < \tau_n < t_n$ such that $x_n \tau_n \in \partial B(J^+(x), \frac{1}{2}\epsilon)$. Since

 $\{x_n\tau_n\}$ is a sequence in $\partial B(J^+(x), \frac{1}{2}\epsilon)$ and $\partial B(J^+(x), \frac{1}{2}\epsilon)$ is compact, $\{x_n\tau_n\}$ has a convergent subsequence. Let $x_n\tau_n \xrightarrow{Y} z$.

If $\tau_n \to \tau$, then $x_n \tau_n \xrightarrow{X} x\tau$. It means that $\partial B(J^+(x), \frac{1}{2}\epsilon) \cap \gamma^+(x) \neq \emptyset$. This is a contradiction. If $\tau_n \to +\infty$, then $z \in J^+(x)$, i.e., $\partial B(J^+(x), \frac{1}{2}\epsilon) \cap J^+(x) \neq \emptyset$. This is a contradiction. Hence $\Lambda^+(x) \neq \emptyset$.

2. Main theorem

Stability has been studied in a flow $f: X \times \mathbb{R} \to X$ on an arbitrary metric space X by N.P. Bhatia and G.P. Szego [2]. We look into the stability in a flow $f: X \times \mathbb{R} \to X$ on a TVS-cone metric space X.

Let X be a TVS-cone metric space and $f: X \times \mathbb{R} \to X$ be a flow on X. For $A \subset X$, we denote $\gamma^+(A) = \bigcup_{a \in A} \gamma^+(a)$.

DEFINITION 2.1. Let M be a closed subset of X. M is said to be stable if for every $x \in M$ and $\epsilon \gg 0_E$ there exists a $\delta \gg 0_E$ such that $\gamma^+(B(x,\delta)) \subset B(M,\epsilon)$. M is said to be uniformly stable if for every $x \notin M$ there exists an $\epsilon \gg 0_E$ such that $x \notin \overline{\gamma^+(B(M,\epsilon))}$. M is said to be Lyapunov stable if for every $\epsilon \gg 0_E$ there exists a $\delta \gg 0_E$ such that $\gamma^+(B(M,\delta)) \subset B(M,\epsilon)$.

Theorem 2.2. Let M be a closed subset of X. If M is Lyapunov stable, then M is stable and uniformly stable.

Proof. Since M is Lyapunov stable, for any $\epsilon \gg 0_E$, there exists a $\delta \gg 0_E$ such that $\gamma^+(B(M,\delta)) \subset B(M,\epsilon)$. $\gamma^+(B(x,\delta)) \subset \gamma^+(B(M,\delta)) \subset B(M,\epsilon)$ for every $x \in M$. Hence M is stable.

Let $x \notin M$. Since X - M is an open set, there exists an $\epsilon \gg 0_E$ such that $B(x,\epsilon) \subset X - M$. Since M is Lyapunov stable, there exists a $\delta \gg 0_E$ such that $\gamma^+(B(M,\delta)) \subset B(M,\frac{1}{2}\epsilon)$. Suppose that $B(x,\frac{1}{2}\epsilon) \cap \gamma^+(B(M,\delta)) \neq \emptyset$. We can find $y \in B(x,\frac{1}{2}\epsilon) \cap \gamma^+(B(M,\delta))$. Since $y \in \gamma^+(B(M,\delta)) \subset B(M,\frac{1}{2}\epsilon)$, there exists $z \in M$ such that $d(z,y) \ll \frac{1}{2}\epsilon$. Since $d(x,z) \preceq d(x,y) + d(y,z) \ll \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon$, $z \in B(x,\epsilon) \subset X - M$. This is a contradiction. Hence $B(x,\frac{1}{2}\epsilon) \cap \gamma^+(B(M,\delta)) = \emptyset$. Therefore $x \notin \overline{\gamma^+(B(M,\delta))}$. It means that M is uniformly stable.

Theorem 2.3. If a compact subset M of X is stable, then M is Lyapunov stable.

Proof. Let $\epsilon \gg 0_E$ be given. Since M is stable, for every $x \in M$ there exists a $\delta_x \gg 0_E$ such that $\gamma^+(B(x,\delta(x))) \subset B(M,\epsilon)$. Since

 $\{B(x,\frac{1}{2}\delta(x)):x\in M\} \text{ is an open cover of }M \text{ and }M \text{ is compact, there exist finitely many }x_1,x_2,\cdots,x_n\in M \text{ such that }M\subset \cup_{k=1}^n B(x_k,\frac{1}{2}\delta(x_k)).$ By Lemma 1.5, there exsits an $\alpha\gg 0_E$ such that $\alpha\ll\frac{1}{2}\delta(x_1),\cdots,\alpha\ll\frac{1}{2}\delta(x_n)).$ For any $y\in B(M,\alpha)$, there exist $x\in M$ and k such that $d(x,y)\ll\alpha$ and $x\in B(x_k,\frac{1}{2}\delta(x_k)).$ Since $d(x_k,y)\preceq d(x_k,x)+d(x,y)\ll\frac{1}{2}\delta(x_k)+\frac{1}{2}\delta(x_k)=\delta(x_k),$ we have $y\in B(x_k,\delta(x_k)).$ Therefore $B(M,\alpha)\subset \cup_{k=1}^n B(x_k,\delta(x_k)).$

Since $\gamma^+(B(M,\alpha)) \subset \gamma^+(\bigcup_{k=1}^n B(x_k,\delta(x_k))) = \bigcup_{k=1}^n \gamma^+(B(x_k,\delta(x_k)))$ $\subset B(M,\alpha)$, we see that M is Lyapunov stable.

THEOREM 2.4. Let X be sequentially compact. If a closed subset M of X is uniformly stable, then M is Lyapunov stable.

Proof. Suppose that M is not Lyapunov stable. Then there exsits an $\epsilon\gg 0_E$ such that for any $\delta\gg 0_E$, $\gamma^+(B(M,\delta))\not\subset B(M,\epsilon)$. For every positive integer n since $\gamma^+(B(M,\frac{1}{n}\epsilon))\not\subset B(M,\epsilon)$, there exists $y_n\in\gamma^+(B(M,\frac{1}{n}\epsilon))-B(M,\epsilon)$. We can find an $x_n\in B(M,\frac{1}{n}\epsilon)$ so that $y_n\in\gamma^+(x_n)$. Since X is sequentially compact, $\{y_n\}$ has a convergent subsequence. Let $y_n\xrightarrow{X}y\in X$. Since $y_n\in X-B(M,\epsilon)$, $y\in\overline{X-B(M,\epsilon)}=X-B(M,\epsilon)$, we have $y\not\in M$. Since M is Lyapunov stable there exists a $\delta\gg 0_E$ such that $y\not\in\overline{\gamma^+(B(M,\delta))}$ and $\delta\in Int P$. Define a map $\theta:E\to E$ by $\theta(v)=v+\delta$. Since $\theta(0_E)=\delta\in Int P$ and θ is continuous there exists a symmetric neighborhood U of 0_E such that $\theta(U)\subset Int P$. Since $\frac{1}{n}\epsilon\xrightarrow{X}0_E$ and $y_n\xrightarrow{X}y$ there exists a n such that $\frac{1}{n}\epsilon\in U$ and $y_n\in X-\overline{\gamma^+(B(M,\delta))}$. Since $-\frac{1}{n}\epsilon\in -U=U$, $\delta-\frac{1}{n}\epsilon=\theta(-\frac{1}{n}\epsilon)\in\theta(U)\subset Int P$. Thus $\frac{1}{n}\epsilon\ll\delta$. Hence $y_n\in\gamma^+(x_n)\subset\gamma^+(B(M,\frac{1}{n}\epsilon))\subset\gamma^+(B(M,\delta))$. This is a contradiction. Thus M is Lyapunov stable.

Theorem 2.5. Let M be a closed subset of X. If M is stable or uniformly stable, M is positively invariant.

Proof. Suppose that there exists $x \in M$ and t > 0 such that $xt \notin M$. Since X - M is open there exists an $\epsilon \gg 0_E$ such that $B(xt, \epsilon) \subset X - M$. Suppose M is stable. There exists a $\delta \gg 0_E$ such that $\gamma^+(B(x, \delta)) \subset B(M, \epsilon)$. Since $xt \in \gamma^+(x) \subset \gamma^+(B(x, \delta)) \subset B(M, \epsilon)$ there is $y \in M$ such that $d(y, xt) \ll \epsilon$, i.e., $B(xt, \epsilon) \subset X - M$. This is a contradiction.

Suppose M is uniformly stable. There exists an $\epsilon \gg 0_E$ such that $xt \notin \overline{\gamma^+(B(M,\epsilon))}$. But $xt \in \gamma^+(x) \subset \gamma^+(B(M,\epsilon)) \subset \gamma^+(B(M,\epsilon))$. This is a contradiction. So M is positively invariant.

COROLLARY 2.6. If a closed subset M of X is Lyapunov stable, then M is positively invariant.

References

- [1] L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
- [2] N. P. Bhatia and G. P. Szego, *Stability theory of dynamical systems*, Classics in Mathematics, Springer-Verlag, Berlin, 2002.
- [3] I. Beg, A. Azam, and M. Arshad, Common fixed points for maps on topological vector space valued cone metric spaces, Inter. J. Math. Math. Science, Vol. 2009, Article ID 560264, 8pages, doi:10.1155/2009/560264.
- [4] Shou Lin and Ying Ge, Compact-valued continuous relations on TVS-cone metric spaces, Published by Faculty of Sciences and Mathematics, University of Nis, Serbia, Filomat, 27 (2013), no. 2, 327-332.
- [5] G. S. Kim and K. B.Lee, Stability for a compact closed relation, Far East Journal of Appl. Math., 89 (2014), no. 2, 89-103.

*

Department of Mathematics Hoseo University ChungNam 31499, Republic of Korea *E-mail*: kblee@hoseo.edu